Vitamin D-dependent rickets type 1A due to pathogenic variant in CYP27B1:Case report

Kelineth Canto1,
Oleg Saldaña1,
Karla Solis1,
Heidy López1

Authors

DOI:

https://doi.org/10.37980/im.journal.ggcl.en.20252759

Keywords:

Vitamin D–Dependent Rickets Type 1A, CYP27B1 Protein, Hypocalcemia, Pathologic Fractures, Infant, Genetic Testing

Abstract

Introduction: This report describes the case of a one-year-old male infant with a history of chronic malnutrition and global developmental delay who was admitted to the Hospital del Niño with community-acquired pneumonia complicated by septic shock; Case presentation: during hospitalization, severe disturbances of mineral metabolism, multiple pathological fractures, and radiographic findings consistent with severe rickets were documented, with biochemical studies showing persistent hypocalcemia, marked elevation of alkaline phosphatase, and secondary hyperparathyroidism; Genetic findings: molecular analysis by clinical exome sequencing identified a homozygous pathogenic variant in the CYP27B1 gene (NM_000785.4:c.602_611del; p.Val201AlafsTer31), confirming the diagnosis of vitamin D–dependent rickets type 1A; Treatment and outcome: treatment with alfacalcidol and calcium supplementation was initiated, with a favorable initial clinical and biochemical response; Conclusion: this case highlights the importance of early recognition of genetic forms of rickets and the use of effective therapeutic alternatives in settings where calcitriol is not available.

Full Content not available at this moment. (Status: 2759)

References

[1] Thacher TD, Fischer PR. Vitamin D–deficiency rickets. N Engl J Med. 2011;364(3):248–254.

[2] Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–281.

[3] Carpenter TO, Shaw NJ, Portale AA, Ward LM, Abrams SA, Pettifor JM. Rickets. Nat Rev Dis Primers. 2017;3:17101.

[4] Wang JT, Lin CJ, Burridge SM, Fu GK, Labuda M, Portale AA, Miller WL. Genetics of vitamin D 1α-hydroxylase deficiency in 17 families. Am J Hum Genet. 1998;63(6):1694–1702. doi:10.1086/302156.

[5] Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365-408. doi:10.1152/physrev.00014.2015.

[6] Fraser DR. Vitamin D–dependent rickets. Endocrinol Metab Clin North Am. 1989;18(3):637–648.

[7] Baroncelli GI, Bereket A, El Kholy M, Audì L, Cesur Y, Ozkan B, et al. Rickets in the Middle East: role of environment and genetic predisposition. J Endocrinol Invest. 2018;41(8):873–885.

[8] Pettifor JM. Calcium and vitamin D metabolism in children. Pediatr Nephrol. 2010;25(9):1839–1848.

[9] Demir K, Kattan WE, Zou M, Durmaz E, BinEssa H, Nalbantoğlu Ö, et al. Novel CYP27B1 gene mutations in patients with vitamin D-dependent rickets type 1A. PLoS One. 2015;10(6):e012.

[10] Tebben PJ, Milliner DS, Horst RL, Harris PC, Singh RJ, Wu Y, et al. Hypercalcemia, hypercalciuria, and nephrocalcinosis in CYP24A1 deficiency. Endocrinol Metab Clin North Am. 2017;46(4):875–893.

[11] Uday S, Högler W. Nutritional rickets and osteomalacia in the twenty-first century: revised concepts, public health, and prevention strategies. Curr Osteoporos Rep. 2017;15(4):293–302. doi:10.1007/s11914-017-0383-y.

[12] Kitanaka S, Takeyama K, Murayama A, Kato S. Molecular basis of vitamin D-dependent rickets type I. Bone. 2001;27(3):369–374.

×